
SKET
A MAN-MACHINE GRAPHICAL COMMUNICATION SYSTEM*

Ivan E. Sutherland
Consultant, Lincoln Laboratory**

Massachusetts Institute of Technology

I. INTRODUCTION
The Sketchpad system makes it possible for

a man and a computer to converse rapidly
through the medium of line drawings. Here-
tofore, most interaction between man and com-
puters has been slowed down by the need to
reduce all communication to written statements
that can be typed; in the past, we have been
writing letters to rather than conferring with
our computers. For many types of communica-
tion, such as describing the shape of a me-
chanical part or the connections of an electrical
circuit, typed statements can prove cumber-
some. The Sketchpad system, by eliminating
typed statements (except for legends) in favor
of line drawings, opens up a new area of man-
machine communication.

AN INTRODUCTORY EXAMPLE
To understand what is possible with the sys-

tem at present let us consider using it to draw
the hexagonal pattern in Figure 4. We will
issue specific commands with a set of push but-
tons, turn functions on and off with switches,
indicate position information and point to exist-
ing drawing parts with the light pen, rotate
and magnify picture parts by turning knobs,
and observe the drawing on the display system.
This equipment as provided at Lincoln Labora-

tory's TX-2 computer1 is shown in Figure 1.
When our drawing is complete it may be inked
on paper, as were all the drawings in this paper,
by a PACE plotter.15

If we point the light pen at the display sys-
tem and press a button called "draw," the com-
puter will construct a straight line segment
which stretches like a rubber band from the

Figure 1. TX-2 operating area—Sketchpad in use. On
the display can be seen part of a bridge similar to those
of Figure 15. The Author is holding the light pen. The
push buttons "draw," "move," etc., are on the box in
front of the Author. Part of the bank of toggle switches
can be seen behind the Author. The size and position of
the part of tne total picture seen on the display are
controlled by the four black knobs just above the tables.

* This paper is based in part on a thesis submitted tothe Department of Electrical Engineering, M.I.T.
partial fulfillment of the requirements for the Degree of Doctor of Philosophy.

** Operated with the support of the U.S. Army, Navy,and Air Force..

329

330 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1963

initial to the present location of the pen as
shown in Figure 2. Additional presses of the
button will produce additional lines, leaving the
closed irregular hexagon shown in Figure 3A.

To make the hexagon regular, we can inscribe
it in a circle. To draw the circle we place the
light pen where the center is to be and press the
button "circle center," leaving behind a center
point. Now, choosing a point on the circle
(which fixes the radius) we press the button
"draw" again, this time getting a circle arc
whose angular length only is controlled by light
pen position as shown in Figure 2.

A. SIX SIDED FIGURE B. TO BE INSCRIBED IN CIRCLE

C. BY MOVING EACH CORNER D. ON TO CIRCLE

/ \

START DRAW !

PATH OF LIGHT PEN

/
\

LINE SEGMENT DRAWN-

TERMINATE-

PATH OF LIGHT PEN

START DRAW-

TERMINATE

CIRCLE CENTER'

ARC OBTAINED
' I

V

Figure 2. Steps for drawing straight lines and circle
arcs.

Next we move the hexagon into the circle by
pointing to a corner of the hexagon and press-
ing the button "move" so that the corner fol-
lows the light pen, stretching two rubber band
line segments behind it. By pointing to the

E. MAKE SIDES EQUAL F. ERASE CIRCLE

G. CALL 7 HEXAGONS H. JOIN CORNERS

Figure 3. Illustrative example, see text.

circle and terminating, we indicate that the
comer is to lie on the circle. Each corner is in
this way moved onto the circle at roughly equal
spacing as shown in Figure 3IX

We have indicated that the vertices of the
hexagon are to lie on the circle, and they will
remain on the circle throughout our further
manipulations. If we also insist that the sides
of the hexagon be of equal length, a regular
hexagon will be constructed.

With Sketchpad we can say, in effect, make
this line equal in length to that line, pointing
to the lines with the light pen. The computer
satisfies all existing conditions (if it is possi-
ble) whenever we turn on a toggle switch. This
done, we have a complete regular hexagon in-
scribed in a circle. We can erase the entire
circle by pointing to any part of it and pressing
the "delete" button. The completed hexagon is
shown in Figure 3F.

SKETCHPAD: A MAN-MACHINE GRAPHICAL COMMUNICATION SYSTEM 331

To make the hexagonal pattern in Figure 4
we wish to attach a large number of hexagons
together by their corners, and so we designate
the six corners of our hexagon as attachment
points by pointing to each and pressing a but-
ton. We now file away the basic hexagon and
begin work on a fresh "sheet of paper" by
changing a switch setting. On the new sheet
we assemble, by pressing a button to create
each hexagon as an "instance" or subpicture,
six hexagons around a central seventh in ap-
proximate position as shown in Figure 3G. A
subpicture may be positioned with the light pen,
rotated or scaled by turning the knobs, or fixed
in position by a termination signal, but its in-
ternal shape is fixed.

By pointing to the corner of one hexagon,
pressing a button, and then pointing to the
corner of another hexagon, we can fasten those
corners together, because these corners have
been designated as attachment points. If we
attach two corners of each outer hexagon to the
appropriate corners of the inner hexagon, the
seven are uniquely related, and the computer
will reposition them as shown in Figure 3H.
An entire group of hexagons, once assembled,
can be treated as a symbol. An "instance" of
the entire group can be called up on another
"sheet of paper" as a subpicture and assembled
with other groups or with single hexagons to
make a very large pattern.

INTERPRETATION OF INTRODUCTORY
EXAMPLE

In the introductory example above we used
the light pen both to position parts of the draw-
ing and to point to existing parts. We also saw
in action the very general subpicture, con-
straint, and definition copying capabilities of
the system.
Subpicture:

J. lie yjLigmai Hexagon migni JUST as wen nave
been anything else: a picture of a transistor,
a roller bearing, or an airplane wing. Any
number of different symbols may be drawn,
in terms of other simpler symbols if desired,
and any symbol may be used as often as
desired.

Constraint:
When we asked that the vertices of the hexa-
gon lie on the circle we were making use of

a basic relationship between picture parts
that is built into the system. Basic relation-
ships (atomic constraints) to make lines
vertical, horizontal, parallel, or perpendicu-
lar; to make points lie on lines or circles;
to make symbols appear upright, vertically
above one another or be of equal size; and
to relate symbols to other drawing parts
such as points and lines have been included
in the system. Specialized constraint types
may be added as needed.

Definition Copying:
We made the sides of the hexagon be equal
in length by pressing a button while pointing
to the side in question. Had we defined a
composite operation such as to make two
lines both parallel and equal in length, we
could have applied it just as easily.

IMPLICATIONS OF INTRODUCTORY
EXAMPLE

As we have seen, a Sketchpad drawing is en-
tirely different from the trail of carbon left on
a piece of paper. Information about how the
drawing is tied together is stored in the com-
puter as well as the information which gives
the drawing its particular appearance. Since
the drawing is tied together, it will keep a use-
ful appearance even when parts of it are moved.
For example, when we moved the corners of the
hexagon onto the circle, the lines next to each
corner were automatically moved so that the
closed topology of the hexagon was preserved.
Again, since we indicated that the corners of
the hexagon were to lie on the circle, they re-
mained on the circle throughout our further
manipulations.

As well as storing how the various parts of
the drawing are related, Sketchpad stores the
structure of the subpictures used. For example,
the storage for the hexagonal pattern of Figure
4 indicates that this pattern is made of smaller
patterns which are in turn made of smaller
patterns which are composed of single hexa-
gons. If the master hexagon is changed, the
entire appearance but not the structure of the
hexagonal pattern will be changed. For ex-
ample, if we change the basic hexagon into a
semicircle, the fish scale pattern shown in Fig-
ure 4 instantly results.

332 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1963

Figure 4. Hexagonal lattice with half hexagon and
semicircle as basic elements.

SKETCHPAD AND THE DESIGN
PROCESS

Construction of a drawing with Sketchpad
is itself a model of the design process. The
locations of the points and lines of the drawing
model the variables of a design, and the geo-
metric constraints applied to the points and
lines of the drawing model the design con-
straints which limit the values of design varia-
bles. The ability of Sketchpad to satisfy the
geometric constraints applied to the parts of a
drawing models the ability of a good designer
to satisfy all the design conditions imposed by
the limitations of his materials, cost, etc. In
fact, since designers in many fields produce
nothing themselves but a drawing of a part,
design conditions may well be thought of as
applying to the drawing of a part rather than
to the part itself. When such design conditions
are added to Sketchpad's vocabulary of con-
straints, the computer will be able to assist a
user not only in arriving at a nice looking
drawing, but also in arriving at a sound design.

PRESENT USEFULNESS
rx.3 more anu more applications nave ween

made, it has become clear that the properties
of Sketchpad drawings make them most useful
in four broad areas:
For Storing and Updating Drawings:

Each time a drawing is made, a description
of that drawing is stored in the computer
in a form that is readily transferred to mag-
netic tape. A library of drawings will thus
develop, parts of which may be used in other
drawings at only a fraction of the invest-
ment of time that was put into the original
drawing.

For Gaining Scientific or Engineering Under-
Standing of Operations That Can Be Described
Graphically:

A drawing in the Sketchpad system may con-
tain explicit statements about the relations
between its parts so that as one part is
changed the implications of this change be-
come evident throughout the drawing. For
instance, Sketchpad makes it easy to study
mechanical linkages, observing the path of
some parts when others are moved.

As a Topological Input Device for Circuit
Simulators, etc.:

Since the storage structure of Sketchpad re-
flects the topology of any circuit or diagram,
it can serve as an input for many network
or circuit simulating programs. The addi-
tional effort required to draw a circuit
completely from scratch with the Sketchpad
system may well be recompensed if the
properties of the circuit are obtainable
through simulation of the circuit drawn.

For Highly Repetitive Drawings:
The ability of the computer to reproduce any
drawn symbol anywhere at the press of a
button, and to recursively include subpictures
within subpictures makes it easy to produce
drawings which are composed of huge num-
bers of parts all similar in shape.

II. RING STRUCTURE
The basic n-component element structure de-

scribed by Ross10 has been somewhat expanded
in the implementation of Sketchpad so that all
references made to a particular ^-component
element or block are collected together by a
string of pointers which originates within that
block. For example, not only may the end
points of a line segment be found by following
pointers in the line block (it-component ele-
ment), but also all the line segments which
terminate on a particular point may be found by
following a string of pointers which starts
within the point block. This string of pointers
closes on itself; the last pointer points back to
the first, hence the name "ring." The ring
points both ways to make it easy to find both the
next and the previous member of the ring in
case, as when deleting, some change must be
made to them.

BASIC OPERATIONS
The basic ring structure operations are:
1. Inserting a new member into a ring at

SKETCHPAD: A MAN-MACHINE GRAPHICAL COMMUNICATION SYSTEM 333

some specified location on it, usually first
or last.

2. Removing a member from a ring.
3. Putting all the members of one ring, in

order, into another at some specified loca-
tion in it, usually first or last.

4. Performing some auxiliary operation on
each member of a ring in either forward
or reverse order.

These basic ring structure operations are im-
plemented by short sections of program defined
as MACRO instructions in the compiler lan-
guage. By suitable treatment of zero and one
member rings, the basic programs operate with-
out making special cases.

Subroutines are used for setting up new n-
component elements in free spaces in the stor-
age structure. As parts of the drawing are
deleted, the registers which were used to rep-
resent them become free. New components are
set up at the end of the storage area, lengthen-
ing it, while free blocks are allowed to accumu-
late. Garbage collection periodically compacts
the storage structure by removal of the free
blocks.

GENERIC STRUCTURE, HIERARCHIES

The main part of Sketchpad can perform
basic operations on any drawing part, calling
for help from routines specific to particular
types of parts when that is necessary. For ex-
ample, the main program can show any part
on the display system by calling the appropriate
display subroutine. The big power of the clear-
cut separation of the general and the specific
is that it is easy to change the details of specific
parts of the program to get quite different re-
sults without any need to change the general
parts.

In the data storage structure the separation
of general and specific is accomplished by col-
lecting all things of one type together in a ring
under a generic heading. The generic heading
contains all the information which makes this
type of thing different from all other types of
things. Thus the data storage structure itself
contains all the specific information. The gen-
eric blocks are further gathered together under
super-generic or generic-generic blocks, as
shown in Figure 5.

UNIVERSE

VARIABLES

|SCM-ARSh-

| POINTS h

|MSTWC£Sf-

| TEXTS |-

| DIGITS | -

HOLDERS

| FREES h -j FIXEOS

ICURF1CS h H WORKS

|FREEDOMSP-f

CONSTRAINTS

Lr-G
HORV H -T |

> {

L

TOPOS

H = l

H LINES |

H CIRCLES |

•|PICTURES|

I K

Figure 5. Generic structure. The w-component ele-
ments for each point or line, etc., are collected under the

generic blocks "lines," "points," etc., shown.

EXPANDING SKETCHPAD
Addition of new types of things to the Sketch-

pad system's vocabulary of picture parts re-
quires only the construction of a new generic
block (about 20 registers) and the writing of
appropriate subroutines for the new type. The
subroutines might be easy to write, as they
usually are for new constraints, or difficult to
write, as for adding ellipse capability, but at
least a finite, well-defined task faces one
to add a new ability to the system. Without a
generic structure it would be almost impossible
to add the instructions required to handle a
new type of element.

III. LIGHT PEN
In Sketchpad the light pen* is time shared

between the functions of coordinate input for
positioning picture parts on the drawing and
demonstrative input for pointing to existing
picture parts to make changes. Although almost
any kind of coordinate input device could be
used instead of the light pen for positioning,
the demonstrative input uses the light pen
optics as a sort of anaiOg computer to remove
from consideration all but a very few picture
parts which happen to fall within its field of
view, saving considerable program time. Draw-
ing systems using storage display devices of
the Memotron type may not be practical be-
cause of the loss of this analog computation
feature.

* The reader unacquainted with light pens should
refer to the paper on Man-Machine Console Facilities
by Stotz32 in this issue.

334 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1963

PEN TRACKING TDQXPTT"'^ '^ T I T T I X T T r\r* A ITIT/"VTV.T

To initially establish pen tracking,* the
Sketchpad user must inform the computer of an
initial pen location. This has come to be known
as "inking-up" and is done by "touching" any
existing line or spot on the display, whereupon
the tracking cross appears. If no picture has
yet been drawn, the letters INK are always
displayed for this purpose. Sketchpad uses loss
of tracking as a "termination signal" to stop
drawing. The user signals that he is finished
drawing by flicking the pen too fast for the
tracking program to follow,

DEMONSTRATIVE USE OF PEN

During the 907c of the time that the light
pen and display system are free from the track-
ing chore, spots are very rapidly displayed to
exhibit the drawing being built, and thus the
lines and circles of the drawing appear. The
light pen is sensitive to these spots and reports
any which fall within its field of view. Thus, a
table of the picture parts seen by the light pen
is assembled during each complete display
cycle. At the end of a display cycle this table
contains all the picture parts that could even
remotely be considered as being "aimed at."

The one-half inch diameter field of view of
the light pen, although well suited to tracking,
is relatively large for pointing. Therefore, the
Sketchpad system will reject any seen part
which is further from the center of the light
pen than some small minimum distance; about
Vs inch was found to be suitable

' •"•J

kind of picture part some method must be pro-
vided for computing its distance from the light
pen center or indicating that this computation
cannot be made.

After eliminating all parts seen by the pen
which lie outside the smaller effective field of
view, the Sketchpad system considers objects
topological^ related to the ones actually seen.
End points of lines and attachment points of
instances (subpictures) are especially impor-
tant. One can thus aim at the end point of a
line even though only the line is displayed.
Figure 6 outlines the various regions within
which the pen must lie to be considered aimed
at a line segment, a circle arc, their end points,
or their intersection.

When the light pen is aimed at a picture part,
the exact location of the light pen is ignored in
favor of a "pseudo pen location" exactly on the
part aimed at. If no object is aimed at, the
pseudo pen location is taken to be the actual
pen location. The pseudo pen location is dis-
played as a bright dot which is used as the
"point of the pencil" in all drawing operations.
As the light pen is moved into the areas out-
lined in Figure 6 the dot will lock onto the
existing parts of the drawing, and any moving
picture parts will jump to their new locations
as the pseudo pen location moves to lie on the
appropriate picture part.

AT POINT

Figure 6. Areas in which pen must lie to "aim at"
existing drawing parts (solid lines).

With just the basic drawing creation and
manipulation functions of "draw," "move," and
"delete," and the power of the pseudo pen loca-
tion and demonstrative language programs, it
is possible to make fairly extensive drawings.
Most of the constructions normally provided by
straight edge and compass are available in
highly accurate form. Most important, how-
ever, the pseudo pen location and demonstra-
tive language give the means for entering the
topological properties of a drawing into the
machine.

IV. DISPLAY GENERATION
The display system, or "scope," on the TX-2

is a ten bit per axis electrostatic deflection
system able to display spots at a maximum rate
of about 100,000 per second. The coordinates
of the spots which are to be seen on the display
are stored in a large table so that computation
and display may proceed independently. If,
instead of displaying each spot successively, the

SKETCHPAD: A MAN-MACHINE GRAPHICAL COMMUNICATION SYSTEM 335

display program displays them in a random
order or with interlace, the flicker of the dis-
play is reduced greatly.

MARKING OF DISPLAY FILE
Of the 36 bits available to store each display

spot in the display file, 20 give the coordinates
of that spot for the display system, and the
remaining 16 give the address of the ^-compo-
nent element which is responsible for adding
that spot to the display. Thus, all the spots in
a line are tagged with the ring structure ad-
dress of that line, and all the spots in an in-
stance (subpicture) are tagged as belonging to
that instance. The tags are used to identify
the particular part of the drawing being aimed
at by the light pen.

If a part of the drawing is being moved by
the light pen, its display spots will be recom-
puted as quickly as possible to show it in suc-
cessive positions. The display spots for such
moving parts are stored at the end of the dis-
play file so that the display of the many non-
moving parts need not be disturbed. Moving
parts are made invisible to the light pen.

MAGNIFICATION OF PICTURES
The shaft position encoder knobs below the

scope (see Figure 1) are used to tell the pro-
gram to change the display scale factor or the
portion of the page displayed. The range of
magnification of 2000 available makes it pos-
sible to work, in effect, on a 7-inch square por-
tion of a drawing about ^ mile on a side.

For a magnified picture, Sketchpad computes
which portion (s) of a curve will appear on the
display and generates display spots for those
portions only. The "edge detection" problem
is the problem of finding suitable end points for
the portion of a curve which appears on the
display.

In concept the edge detection problem is
trivial. In terms of program time for lines and
circles the problem is a small fraction of the
total computational load of the system, but in
terms of program logical complexity the edge
detection problem is a difficult one. For ex-
ample, the computation of the intersection of
a circle with any of the edges of the scope is
easy, but computation of the intersection of a
circle with all four edges may result in as many
as eight intersections, some pairs of which may

be identical, the scope corners. Now which of
these intersections are actually to be used as
starts of circle arcs?

LINE AND CIRCLE GENERATION
All of Sketchpad's displays are generated

from straight line segments, circle arcs, and
single points. The generation of the lines and
circles is accomplished by means of the differ-
ence enuations'.

Xi = Xi-x + AX yi = yi-i + Ay (1)

for lines, and

Xi = Xi-2 + -~ (yi-i - ye)
R (2)
2 (\

for circles, where subscripts i indicate succes-
sive display spots, subscript c indicates the
circle center, and R is the radius of the circle
in Scope Units. In implementing these differ-
ence equations in the program, the fullest pos-
sible use is made of the coordinate arithmetic
capability of the TX-2 so that both the x and y
equation computations are performed in par-
allel on 18 bit sub words. Even so, about % of
the total Sketchpad computation time is spent
in line and circle generation. A vector and
circle generating display would materially re-
duce the computational load of Sketchpad.

For computers which do only one addition
at a time, the difference equations:

xt = Xi-! + -5- (yi-i - yc)
(3)

yi y%—\ r) \X% xc)

should be used to generate circles. Equations
(3) approximate a circle well enough and are
known to close exactly both in theory and when
implemented, because the x and y equations are
dissimilar.

DIGITS AND TEXT
Text, to put legends on a drawing, is dis-

played by means of special tables which indi-
cate the locations of line and circle segments
to make up the letters and numbers. Each piece
of text appears as a single line of not more

336 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1963

than 36 equally spaced characters which can
be changed by typing. Digits to display the
value of an indicated scalar at any position and
in any size and rotation are formed from the
same type face as text. It is possible to display
up to five decimal digits with sign; binary to
decimal conversion is provided, and leading
zeros are suppressed.

Subpictures, whose use was seen in the in-
troductory example above, are each represented
in storage as a single w-component element.
A subpicture is said to be an "instance" of its
"master picture." To display an instance, all
of the lines, text, etc. of its master picture must
be shown in miniature on the display. The in-
stance display program makes use of the line,
circle, number, and text display programs and
itself to expand the internal structure of the
instance.

DISPLAY OF ABSTRACTIONS
The usual picture for human consumption

displays only lines, circles, text, digits, and
instances. However, certain very useful ab-
stractions which give the drawing the proper-
ties desired by the user are represented in the
ring structure storage. For example, the fact
that the start and end points of a circle arc
should be equidistant from the circle's center
point is represented in storage by a "constraint"
block. To make it possible for a user to manip-
ulate these abstractions, each abstraction must
be able to be seen on the display if desired.
Not only does displaying abstractions make it
possible for the human user to know that they
exist, but also makes it possible for him to aim at
them with the light pen and, for example, erase
them. To avoid confusion, the display for par-
ticular types of objects may be turned on or
off selectively by toggle switches. Thus, for
example, one can turn on display of constraints
as well as or instead of the lines and circles
which are normally seen.

If their selection toggle switch is on, con-
straints are displayed as shown in Figure 7.
The central circle and code letter are located
at the average location of the variables con-
strained. The four arms of a constraint extend
from the top, right side, bottom, and left side
of the circle to the first, second, third, and
fourth variables constrained, respectively. If
fewer than four variables are constrained, ex-

X- €> -X

X

®
Figure 7. Display of constraints.

cess arms are omitted. In Figure 7 the con-
straints are shown applied to "dummy varia-
bles," each of which shows as an X.

Another abstraction that can be displayed
if desired is the value of a set of digits. For
example, in Figure 8 are shown three sets of
digits all displaying the same scalar value,
-5978. The digits themselves may be moved,
rotated, or changed in size, without changing
the value displayed. If we wish to change the
value, we point at its abstract display, the #
seen in Figure 8. The three sets of digits in
Figure 8 all display the same value, as indi-
cated by the lines connecting them to the # ;
changing this value would make all three sets
of digits change. Constraints may be applied
independently to either the position of the digits
or their value as indicated by the two con-
straints in the figure.

V. RECURSIVE FUNCTIONS
In the process of making the Sketchpad sys-

tem operate, a few very general functions were
developed which make no reference at all to
the specific types of entities on which they oper-

CONSTRAINT MAKES
DIGETS UPRIGHT

SCALAR

CONSTRAINT ON
SCALAR VALUE

Figure 8. Three sets of digits displaying the same
scalar value.

SKETCHPAD: A MAN-MACHINE GRAPHICAL COMMUNICATION SYSTEM 337

ate. These general functions give the Sketch-
pad system the ability to operate on a wide
range of problems. The motivation for making
the functions as general as possible came from
the desire to get as much result as possible
from the programming effort involved. For
example, the general function for expanding
instances makes it possible for Sketchpad to
handle any fixed geometry subpicture. The
power obtained from the small set of gener-
alized functions in Sketchpad is one of the most
important results of the research.

In order of historical development, the recur-
sive functions in use in the Sketchpad system
are:

1. Expansion, of instances, making it pos-
sible to have subpictures within subpic-
tures to as many levels as desired.

2. Recursive deletion, whereby removal of
certain picture parts will remove other
picture parts in order to maintain con-
sistency in the ring structure.

3. Recursive merging, whereby combination
of two similar picture parts forces com-
bination of similarly related other picture
parts, making possible application of com-
plex definitions to an object picture.

RECURSIVE DELETING
/ / a thing upon which other things depend is

deleted, the dependent things must be deleted
also. For example, if a point is to be deleted,
all lines which terminate on the point must also
be deleted. Otherwise, since the ^-component
elements for lines contain no positional infor-
mation, where would these lines end ? Similarly,
deletion of a variable requires deletion of all
constraints on that variable; a constraint must
have variables to act on.

RECURSIVE MERGING
/ / two things of the same type which are in-

dependent are merged, a single thing of that
type results, and all things which depended on
either of the merged things depend on the re-
sult* of the merger. For example, if two points
are merged, all lines which previously termi-
nated on either point now terminate on the
single resulting point. In Sketchpad, if a thing
is being moved with the light pen and the ter-
mination flick of the pen is given while aiming
at another thing of the same type, the two

things will merge. Thus, if one moves a point
to another point and terminates, the points will
merge, connecting all lines which formerly ter-
minated on either. This makes it possible to
draw closed polygons.

/ / two things of the same type which do
depend on other things are merged, the things
depended on by one will be forced to merge,
respectively, with the things depended on by
the other. The result* of merging two -depend-
ent things depends, respectively, on the results*
of the mergers it forces. For example, if two
lines are merged, the resultant line must refer
to only two end points, the results of merging
the pairs of end points of the original lines.
All lines which terminated on any of the four
original end points now terminate on the ap-
propriate one of the remaining pair. More im-
portant and useful, all constraints which ap-
plied to any of the four original end points
now apply to the appropriate one of the re-
maining pair. This makes it possible to speak
of line segments as being parallel even though
(because line segments contain no numerical
information to be constrained) the parallelism
constraint must apply to their end points and
not to the line segments themselves. If we wish
to make two lines both parallel and equal in
length, the steps outlined in Figure 9 make it
possible. More obscure relationships between
dependent things may be easily defined and
applied. For example, constraint complexes can
be defined to make line segments be collinear,
to make a line be tangent to a circle, or to make
the values represented by two sets of digits be
equal.

RECURSIVE DISPLAY OF INSTANCES
The block of registers which represents an

instance is remarkably small considering that
it may generate a display of any complexity.
For the purposes of display, the instance block
makes reference to its master picture. The in-
stance will appear on the display as a figure
geometrically similar to its master picture at a
location, size, and rotation indicated by the four
numbers which constitute the "value" of the
instance. The value of an instance is considered
numerically as a four dimensional vector. The

* The "result" of a merger is a single thing of the
same type as the merged things.

338 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1963

A. OPERATION B. PICTURE TO
DEFINITION CONSTRAIN

C. DEFINITION D. FIRST LINE
COPIED MERGED

E. SECOND LINE F. CONSTRAINTS
MERGED SATISFIED

Figure 9. Applying a two-constraint definition to turn
a quadrilateral into a parallelogram.

components of this vector are the coordinates
of the center of the instance and its actual size
as it appears on the drawing times the sine and
cosine of the rotation angle involved.

In displaying an instance of a picture, refer-
ence is made to the master picture to find out
what picture parts are to be shown. The master
picture referred to may contain instances, how-
ever, requiring further reference, and so on
until a picture is found which contains no in-
stances. At each stage in the recursion, any
picture parts displayed must be relocated so
that they will appear at the correct position,
size and rotation on the display. Thus, at each
stage of the recursion, some transformation is
applied to all picture parts before displaying
them. If an instance is encountered, the trans-
formation represented by its value must be
adjoined to the existing transformation for dis-
play of parts within it. When the expansion of
an instance within an instance is finished, the
transformation must be restored for continua-
tion at the higher level.

ATTACKERS AND INSTANCES
Many symbols must be integrated into the

rest of the drawing by attaching lines to the
symbols at appropriate points, or by attaching
the symbols directly to each other. For ex-
ample, circuit symbols must be wired up, geo-
metric patterns made by fitting shapes together,
or mechanisms composed of links tied together
appropriately. An instance may have any num-
ber of attachment points, and a point may serve
as attacher for any number of instances. The
light pen has the same affinity for the attachers
of an instance that it has for the end point of
a line.

An "instance-point" constraint, shown with
code T in Figure IOC, is used to relate an in-
stance to each of its attachment points. An
instance-point constraint is satisfied only when
the point bears the same relationship to the
instance that a master point in the master pic-
ture for that instance bears to the master pic-
ture coordinate system.

Any point may be an attacher of an instance,
but the point must be designated as an attacher
in the master drawing of the instance. For
example, when one first draws a resistor, the
ends of the resistor must be designated as at-
tachers if wiring is to be attached to instances
of it. At each level of building complex pic-
tures, the attachers must be designated anewr.
Thus of the three attachers of a transistor it is
possible to select one or two to be the attachers
of a flip-flop.

VI. BUILDING A DRAWING,
THE COPY FUNCTION

At the start of the Sketchpad effort certain
ad hoc drawing functions were programmed
as the atomic operations of the system. Each
such operation, controlled by a push button,
creates in the ring structure a specific set of
new drawing parts. For example, the "draw"
button creates a line segment and two new end
points (unless the light pen happens to be
aimed at a point in which case only one new
point need be created). Similarly, there are
atomic operations for drawing circles, applying
a horizontal or vertical constraint to the end
points of a line aimed at, and for adding a
"point-on-line" constraint whenever a point is
moved onto a line and left there.

SKETCHPAD: A MAN-MACHINE GRAPHICAL COMMUNICATION SYSTEM 339

The atomic operations described above make
it possible to create in the ring structure new
picture components and relate them topologi-
cal^. The atomic operations are, of course,
limited to creating points, lines, circles, and
two or three types of constraints. Since imple-
mentation of the copy function it has become
possible to create in the ring structure any pre-
defined combination of picture parts and con-
straints at the press of a button. The recursive
merging function makes it possible to relate the
copied set of picture parts to any existing parts.
For example, if a line segment and its two end
points are copied into the object picture, the
action of the "draw" button may be exactly
duplicated in every respect. Along with the
copied line, however, one might copy as well a
constraint, Code H, to make the line horizontal
as shown in Figure 10A, or two constraints to
make the line both horizontal and three inches
long, or any other variation one cares to put
into the ring structure to be copied.

LINE ATTACHER 2

POINT ATTACHER 2

POINT ATTACHER I 1

A. HORIZONTAL
LINE

LINE ATTACHER I

B. EQUAL LENGTH
LINES

POINT ATTACHER 2
DIAMOND INSTANCE

POINT ATTACHER I

INSTANCE-POINT CONSTRAINT-**©^/ V (f)
CONSTRAINTS ON INSTANCE • - (§) (?)

C. RARTLY FLEXIBLE ARROW

When one draws a definition picture to be
copied, certain portions of it to be used in relat-
ing it to other object picture parts are desig-
nated as "attachers." Anything at all may be
designated: for example, points, lines, circles,
text, even constraints! The rules used for com-
bining points when the "draw" button is
pressed are generalized so that:

For copying a picture, the last-designated
attacher is left moving with the light pen.
The next-to-last-designated attacher is re-
cursively merged with whatever object the
pen is aimed at when the copying occurs, if
that object is of like type. Previously desig-
nated attachers are recursively merged with
previously designated object picture parts, if
of like type, until either the supply of desig-
nated attachers or the supply of designated
object picture parts is exhausted. The last-
designated attacher may be recursively
merged with any other object of like type
when the termination flick is given.

Normally only two designated attachers are
used because it is hard to keep track of addi-
tional ones.

If the definition picture consists of two line
segments, their four end points, and a con-
straint, Code M, on the points which makes the
lines equal in length, with the two lines desig-
nated as attachers as shown in Figure 10B,
copying enables the user to make any two lines
equal in length. If the pen is aimed at a line
when "copy" is pushed, the first of the two
copied lines merges with it (taking its position
and never actually being seen). The other
copied line is left moving with the light pen
and will merge with whatever other line the
pen is aimed at when termination occurs. Since
merging is recursive, the copied equal-length
constraint, Code M, will apply to the end points
of the desired pair of object picture lines.

INSTANCE ATTACHER 2
INSTANCE ATTACHER I

i

D. PRE-JOINED INSTANCES

Figure 10. Definition pictures to be copied, see text.

COPYING INSTANCES
As we have seen above, the internal structure

of an instance is entirely fixed. The internal
structure of a copy, however, is entirely varia-
ble. An instance always retains its identity as
a single part of the drawing; one can only delete
an entire instance. Once a definition picture is
copied, however, the copy loses all identity as
a unit; individual parts of it may be deleted at
will.

340 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1963

One might expect that there was interme-
diate ground between the fixed-internal-struc-
ture instance and the loose-internal-structure
copy. One might wish to produce a collection
of picture parts, some of which were fixed in-
ternally and some of which were not. The
entire range of variation between the instance
and the copy can be constructed by copying
instances.

For example, the arrow shown in Figure IOC
can be copied into an object picture to result in
a fixed-internal-structure diamond arrowhead
with a flexible tail. As the definition in Figure
IOC is set up, drawing diamond-arrowTheaded
lines is just like drawing ordinary lines. One
aims the light pen where the tail is to end,
Dresses "copy," and moves off with an arrow-
head following the pen. The diamond arrow-
head in this case will not rotate (constraint
Code E) , and will not change size (constraint
CodeF).

Copying pre-joined instances can produce
vast numbers of joined instances very easily.
For example, the definition in Figure 10D, when
repetitively copied, will result in a row of
joined, equal size (constraint Code S) dia-
monds. In this the instances themselves
are attachers. Although each press of the
"copy" button copies two new instances into
the object picture, one of these is merged with
the last instance in the growing row. In the
final row, therefore, each instance carries all
constraints which are applied to either of the
instances in the definition. This is why only
one of the instances in Figure 10D carries the
erect constraint, Code E.

VII. CONSTRAINT SATISFACTION
The major feature which distinguishes a

Sketchpad drawing from a paper and pencil
drawing is the user's ability to specify to
Sketchpad mathematical conditions on already
drawn parts of his drawing which will be auto-
matically satisfied by the computer to make the
drawing take the exact shape desired. The
process of fixing up a drawing to meet new con-
ditions applied to it after it is already partially
complete is very much like the process a de-
signer goes through in turning a basic idea into
a finished design. As new requirements on the
various parts of the design are thought of, small
changes are made to the size or other properties

of parts to meet the new conditions. By mak-
ing Sketchpad able to find new values for varia-
bles which satisfy the conditions imposed, it is
hoped that designers can be relieved of the need
of much mathematical detail. The effort ex-
pended in making the definition of constraint
types as general as possible was aimed at
making design constraints as well as geometric
constraints equally easy to add to the system.

DEFINITION OF A CONSTRAINT TYPE

Each constraint type is entered into the sys-
tem as a generic block indicating the various
properties of that particular constraint type.
The generic block tells how many variables are
constrained, which of these variables may be
changed in order to satisfy the constraint, how
many degrees of freedom are removed from the
constrained variables, and a code letter for
human reference to this constraint type.

The definition of what a constraint type does
is a subroutine which will compute, for the
existing values of the variables of a particular
constraint of that type, the error introduced
into the system by that particular constraint.
For example, the defining subroutine for mak-
ing points have the same x coordinate (to make
a line between them vertical) computes the
difference in their x coordinates. What could
be simpler? The computed error is a scalar
which the constraint satisfaction routine will
attempt to reduce to zero by manipulation of
the constrained variables. The computation of
the error may be non-linear or time dependent,
or it may involve parameters not a part of the
drawing such as the setting of toggle switches,
etc.

When the one pass method of satisfying
constraints to be described later on fails, the
Sketchpad system falls back on the reliable but
slow method of relaxation11 to reduce the errors
indicated by various computation subroutines
to smaller and smaller values. For simple con-
structions such as the hexagon illustrated in
Figure 3, the relaxation procedure is sufficiently
fast to be useful. However, for complex sys-
tems of variables, especially directly connected
instances, relaxation is unacceptably slow. For-
tunately it is for just such directly connected
instances that the one pass method shows the
most striking success.

SKETCHPAD: A MAN-MACHINE GRAPHICAL COMMUNICATION SYSTEM 341

ONE PASS METHOD
Sketchpad can often find an order in which

the variables of a drawing may be re-evaluated
to completely satisfy all the conditions on them
in just one pass. For the cases in which the one
pass method works, it is far better than relaxa-
tion : it gives correct answers at once; relaxa-
tion may not give a correct solution in any
finite time. Sketchpad can find an order in
which to re-evaluate the variables of a drawing
for most of the common geometric construc-
tions. Ordering is also found easily for the
mechanical linkages shown in Figures 13 and
14. Ordering cannot be found for the bridge
truss problem in Figure 15.

The way in which the one pass method works
is simple in principle and was easy to imple-
ment as soon as the nuances of the ring struc-
ture manipulations were understood. To visu-
alize the one pass method, consider the variables
of the drawing as places and the constraints
relating variables as passages through which
one might pass from one variable to another.
Variables are adjacent to each other in the
maze formed by the constraints if there is a
single constraint which constrains them both.
Variables are totally unrelated if there is no
path through the constraints by which to pass
from one to the other.

Suppose that some variable can be found
which has so few constraints applying to it
that it can be re-evaluated to completely satisfy
all of them. Such a variable we shall call a
"free" variable. As soon as a variable is recog-
nized as free, the constraints which apply to it
are removed from further consideration, be-
cause the free variable can be used to satisfy
them. Removing these constraints, however,
may make adjacent variables free. Recognition
of these new variables as free removes further
constraints from consideration and may make
other adjacent variables free, and so on through-
out the maze of constraints. The manner in
which freedom spreads is much like the method
used in Moore's algorithm8 to find the shortest
path through a maze. Having found that a col-
lection of variables is free, Sketchpad will re-
evaluate them in reverse order, saving the
first-found free variable until last. In re-
evaluating any particular variable, Sketchpad
uses only those constraints which were present
when that variable was found to be free.

VIII. EXAMPLES AND CONCLUSIONS
The examples in this section were all taken

from the library tape and thus serve to illustrate
not only how the Sketchpad system can be used,
but also how it actually has been used so far.
We conclude from these examples that Sketch-
pad drawings can bring invaluable understand-
ing to a user. For drawings where motion of
the drawing, or analysis of a drawn problem
is of value to the user, Sketchpad excels. For
highly repetitive drawings or drawings where
accuracy is required, Sketchpad is sufficiently
faster than conventional techniques to be worth-
while. For drawings which merely communi-
cate with shops, it is probably better to use con-
ventional paper and pencil.

PATTERNS
The instance facility enables one to draw any

symbol and duplicate its appearance anywhere
on an object drawing at the push of a button.
This facility made the hexagonal pattern we
saw in Figure 4 easy to draw. It took about one
half hour to generate 900 hexagons, including
the time taken to figure out how to do it. Plot-
ting them takes about 25 minutes. The drafting
department estimated it would take two days
to produce a similar pattern.

The instance facility also made it easy to
produce long lengths of the zig-zag pattern
shown in Figure 11. As the figure shows, a
single "zig" was duplicated in multiples of five
and three, etc. Five hundred zigs were gen-
erated in a single row. Four such rows were
plotted one-half inch apart to be used for pro-
ducing a printed circuit delay line. Total time
taken was about 45 minutes for constructing
the figure and about 15 minutes to plot it.

A somewhat less repetitive pattern to be used
for encoding the time in a digital clock is shown
in Figure 12. Each cross in the figure marks the
position of a hole. The holes are placed so that
a binary coded decimal (BCD) number will in-

-Tl _TLrLTLJl_n
JTJTJTJTJTTTJTJXITriJTJTJTn^

jtnnnannnnnnnfuuuvuuinfuuiAfUinjuuuinJinnnnnnnji^

Figure 11. Zig-Zag for delay line.

342 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1963

Figure 12. Binary coded decimal encoder for clock.
Encoder was plotted exactly 12 inches in diameter for

direct use as a layout.

dicate the time. Total time for placing crosses
was 20 minutes, most of which was spent try-
ing to interpret a pencil sketch of their posi-
tions.

LINKAGES
By far the most interesting application of

Sketchpad so far has been drawing and moving
linkages. The ability to draw and then move
linkages opens up a new field of graphical
manipulation that has never before been avail-
able. It is remarkable how even a simple link-
age can generate complex motions. For ex-
ample, the linkage of Figure 13 has only three
moving parts. In this linkage a central _L link
is suspended between two links of different

Figure 13. Three bar linkage. The paths of four points
on the central link are traced. This is a 15 second time

exposure of a moving Sketchpad drawing.

lengths. As the shorter link rotates, the longer
one oscillates as can be seen in the multiple
exposure. The _L link is not shown in Figure
13 so that the motion of four points on the
upright part of the J_ may be seen. These are
the four curves at the top of the figure.

To make the three bar linkage, an instance
shaped like the _1_ was drawn and given 6
attachers, two at its joints with the other links
and four at the places whose paths were to be
observed. Connecting the _L shaped subpicture
onto a linkage composed of three lines with
fixed length created the picture shown. The
driving link was rotated by turning a knob be-
low the scope. Total time to construct the link-
age was less than 5 minutes, but over an hour
was spent playing with it.

A linkage that would be difficult to build
physically is shown in Figure 14 A. This link-

Figure 14. Conic drawing linkage. As the "driving
lever" is moved, the point shown with a box around it
(in A) traces a conic section. This conic can be seen in

the time exposure (B).

SKETCHPAD: A MAN-MACHINE GRAPHICAL COMMUNICATION SYSTEM 343

age is based on the complete quadrilateral. The
three circled points and the two lines which
extend out of the top of the picture to the right
and left are fixed. Two moving lines are drawn
from the lower circled points to the intersec-
tions of the long fixed lines with the driving
lever. The intersection of these two moving
lines (one must be extended) has a box around
it. It can be shown theoretically that this link-
age produces a conic section which passes
through the place labeled "point on curve" and
is tangent to the two lines marked "tangent."
Figure 14 B shows a time exposure of the mov-
ing point in many positions. At first, this link-
age was drawn and working in 15 minutes.
Since then we have rebuilt it time and again
until now we can produce it from scratch in
about 3 minutes.

DIMENSION LINES
To make it possible to have an absolute scale

in drawings, a constraint is provided which
forces the value displayed by a set of digits to
indicate the distance between two points on the
drawing. This distance-indicating constraint is
used to make the number in a dimension line
correspond to its length. Putting in a dimension
line is as easy as drawing any other line. One
points to where one end is to be left, copies the
definition of the dimension line by pressing the
"copy" button, and then moves the light pen to
where the other end of the dimension line is to
be. The first dimension line took about 15
minutes to construct, but that need never be
repeated since it is a part of the library.

BRIDGES
One of the largest untapped fields for appli-

cation of Sketchpad is as an input program for
other computation programs. The ability to
place lines and circles graphically, when coupled
with the ability to get accurately computed re-
sults pictorially displayed, should bring about a
revolution in computer application. By using
Sketchpad's relaxation procedure we were to
demonstrate analysis of the force distribution
in the members of a pin connected truss.

A bridge is first drawn with enough con-
straints to make it geometrically accurate.
These constraints are then deleted and each
member is made to behave like a bridge beam.

A bridge beam is constrained to maintain
constant length, but any change in length is in-
dicated by an associated number. Under the
assumption that each bridge beam has a cross-
sectional area proportional to its length, the
numbers represent the forces in the beams. The
basic bridge beam definition (consisting of two
constraints and a number) may be copied and
applied to any desired line in a bridge picture
by pointing to the line and pressing the "copy"
button.

Having drawn a basic bridge shape, one can
experiment with various loading conditions and
supports to see what the effect of making minor
modifications is. For example, an arch bridge
is shown in Figure 15 supported both as a three-
hinged arch (two supports) and as a cantilever
(four supports). For nearly identical loading
conditions the distribution of forces is markedly
different in these two cases.

Figure 15. Cantilever and arch bridges. The numbers
indicate the forces in the various members as computed

by Sketchpad. Central load is not exactly vertical

ARTISTIC DRAWINGS
Sketchpad need not be applied exclusively to

engineering drawings. For example, the girl
"Nefertite" shown in Figure 16 can be made to
wink by changing which of the three types of
eyes is placed in position on her otherwise eye-
less face. In the same way that linkages can be
made to move, a stick figure could be made to
pedal a bicycle or Nefertite's hair could be
made to swing. The ability to make moving
drawings suggests that Sketchpad might be
used for making animated cartoons.

344 PROCEEDINGS—SPRING JOINT COMPUTER

Figure 16. Winking girl, "Nefertite," and her com-
ponent parts.

ELECTRICAL CIRCUIT DIAGRAMS
Unfortunately, electrical circuits require a

great many symbols which have not yet been
drawn properly with Sketchpad and therefore
are not in the library. After some time is
spent working on the basic electrical symbols
it may be easier to draw circuits. So far, how-
ever, circuit drawing has proven difficult.

The circuits of Figure 17 are parts of an
analog switching scheme. You can see in the
figure that the more complicated circuits are
made up of simpler symbols and circuits. It is
very difficult, however, to plan far enough ahead
to know what composites of circuit symbols will
be useful as subpictures of the final circuit. The
simple circuits shown in Figure 17 were com-
pounded into a big circuit involving about 40
transistors. Including much trial and error, the
time taken by a new user (for the big circuit
not shown) was ten hours. At the end of that
time the circuit was still not complete in every
detail and he decided it would be better to draw
it by hand after all.

CONCLUSIONS
The circuit experience points out the most

important fact about Sketchpad drawings. It is
only worthwhile to make drawings on the com-
puter if you get something more out of the
drawing than just a drawing. In the repetitive

CONFERENCE, 1963

Figure 17. Circuit diagrams. These are parts of the
large circuit mentioned in the text.

patterns we saw in the first examples, precision
and ease of constructing great numbers of parts
were valuable. In the linkage examples, we
were able to gain an understanding of the
behavior of a linkage as well as its appearance.
In the bridge examples we got design answers
which were worth far more than the computer
time put into them. If we had had a circuit
simulation program connected to Sketchpad so
that we would have known whether the circuit
we drew worked, it would have been worth our
while to use the computer to draw it. We are
as yet a long way from being able to produce
routine drawings economically with the com-
puter.

FUTURE WORK
The methods outlined in this paper generalize

nicely to three dimensional drawing. In fact,
the work reported in "Sketchpad III" by
Timothy Johnson3 will let the user communicate

SKETCHPAD: A MAN-MACHINE GRAPHICAL COMMUNICATION SYSTEM 345

solid objects to the computer. Johnson is com-
pletely bypassing the problem of converting
several two dimensional drawings into a three
dimensional shape. Drawing will be directly
in three dimensions from the start. No two di-
mensional representation will ever be stored.

Work is also proceeding in direct conversion
of photographs into line drawings. Roberts
reports a computer program9 able to recognize
simple objects in photographs well enough to
produce three dimensional line drawings for
them. Roberts is storing his drawings in the
ring structure described here so that his results
will be compatible with the three dimensional
version of Sketchpad.

Major improvements to Sketchpad of the
same order and power as the existing definition
copying capability can be foreseen. At present
Sketchpad is able to add defined relationships
to an existing object drawing. A method should
be devised for defining and applying changes
which involve removing some parts of the ob-
ject drawing as well as adding new ones. Such
a capability would permit one to define, for
example, what rounding off a corner means.
Then, one could round off any corner by point-
ing to it and applying the definition.

ACKNOWLEDGEMENTS

The author is indebted to Professors Claude
E. Shannon, Marvin Minsky and Steven A.
Coons of the Massachusetts Institute of Tech-
nology for their help and advice throughout the
course of this research.

The author also wishes to thank Douglas T.
Ross and Lawrence G. Roberts for their help
and answers to his many questions.

BIBLIOGRAPHY

1. CLARK, W. A., FRANKOVICH, J. M.. PETER-
SON, H. P., FORGIE, J. W., BEST, R. L.,
OLSEN, K. H., "The Lincoln TX-2 Compu-
ter," Technical Report 6M-4968, Massachu-
setts Institute of Technology, Lincoln Lab-
oratory, Lexington, Mass., April 1, 1957,
Proceedings of the Western Joint Compu-
ter Conference, Los Angeles, California,
February 1957.

2. COONS, S. A., Notes on Graphical Input
Methods, Memorandum 8436-M-17, Dy-

namic Analysis and Control Laboratory,
Massachusetts Institute of Technology, De-
partment of Mechanical Engineering, Cam-
bridge, Mass., May 4,1960.

3. JOHNSON, T. E., "Sketchpad III, Three
Dimensional Graphical Communication
with a Digital Computer," Proceedings of
the Spring Joint Computer Conference,
Detroit, Michigan, May 21-23, 1963, (this
issued.

4. JOHNSTON, L. E., A Graphical Input De-
vice and Shape Description Interpretation
Routines, Memorandum to Prof. Mann,
Massachusetts Institute of Technology, De-
partment of Mechanical Engineering, Cam-
bridge, Mass., May 4,1960.

5. LICKLIDER, J. C. R., "Man-Computer Sym-
biosis," I.R.E. Trans, on Human Factors in
Electronics, vol. HFE, pp. 4-10, March
1960.

6. LICKLIDER, J. C. R., and CLARK, W., "On-
line Man-Computer Communication," Pro-
ceedings of the Spring Joint Computer
Conference, San Francisco, California,
May 1-3, 1962, vol. 21, pp. 113-128.

7. LOOMIS, H. H. JR., Graphical Manipulation
Techniques Using the Lincoln TX-2 Com-
puter, Group Report 51G-0017, Massachu-
setts Institute of Technology, Lincoln Lab-
oratory, Lexington, Mass., November 10,
1960.

8. MOORE, E. F., "On the Shortest Path
Through a Maze," Proceedings of the In-
ternational Symposium on the Theory of
Switching, Harvard University, Harvard
Annals, vol. 3, pp. 285-292, 1959.

9. ROBERTS, L. G., Machine Perception of
Three Dimensional Solids, Ph.D. Thesis,
Massachusetts Institute of Technology,
Electrical Engineering Department, Cam-
bridge, Mass., February 1963.

10. Ross, D. T., RODRIGUEZ, J. E., "Theoretical
Foundations for the Computer-Aided De-
sign System," Proceedings of the Spring
Joint Computer Conference, Detroit, Michi-
gan, May 21-23, 1963, (this issue).

11. SOUTHWELL, R. V., Relaxation Methods in
Engineering Science, Oxford University
Press, 1940.

346 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1963

12. STOTZ, R., "Man-Machine Console Facilities
for Computer-Aided Design," Proceedings
of the Spring Joint Computer Conference,
Detroit, Michigan, May 21-23, 1963, (this
issue).

13. VANDERBURGH, A. JR., TX-2 Users Hand-
book, Lincoln Manual No. 45, Massachu-
setts Institute of Technology, Lincoln Lab-
oratory, Lexington, Mass., July 1961.

14. WALSH, J. F., and SMITH, A. F., "Compu-
ter Utilization," Interim Engineering Re-
port 6873-1R-10 and 11, Electronic Systems
Laboratory, Massachusetts Institute of
Technology, Cambridge, Mass., pp. 57-70,
November 30, 1959.

15. Handbook for Variplotter Models 205S and
205T, PACE, Electronic Associates In-
corporated. Long Branch, New Jersey,
June 15, 1959.

